
Model Predictive Control

Solving Nonlinear Model Predictive Control (NMPC) Problems

Colin Jones

Laboratoire d’Automatique

1



NMPC Theory - Quick and Dirty



Nonlinear Model Predictive Control - NMPC

u?(x0) = argmin

N−1∑
i=0

l(xi, ui) + Vf (xN )

s.t. xi+1 = f(xi, ui) ∀i = 0, . . . , N − 1

g(xi, ui) ≤ 0 ∀i = 0, . . . , N − 1

h(xN ) ≤ 0

where f , g and h are continuous.

Theory is the same as linear MPC

Feasibility Same assumptions on terminal constraint

Stability Same assumptions on stage cost and terminal cost

What is much harder

Invariance Sets are harder to calculate... so we often drop terminal constraints

(or take xN = 0)

Optimality May only obtain a local minimum, or there may be multiple optimal

solutions. This leads to many difficulties.

2



Nonlinear Model Predictive Control - NMPC

u?(x0) = argmin

N−1∑
i=0

l(xi, ui) + Vf (xN )

s.t. xi+1 = f(xi, ui) ∀i = 0, . . . , N − 1

g(xi, ui) ≤ 0 ∀i = 0, . . . , N − 1

h(xN ) ≤ 0

where f , g and h are continuous.

Theory is the same as linear MPC

Feasibility Same assumptions on terminal constraint

Stability Same assumptions on stage cost and terminal cost

What is much harder

Invariance Sets are harder to calculate... so we often drop terminal constraints

(or take xN = 0)

Optimality May only obtain a local minimum, or there may be multiple optimal

solutions. This leads to many difficulties.
2



Today: Forming and Solving NMPC Problems

min

N−1∑
i=0

l(xi, ui) + Vf (xN )

s.t. xi+1 = f(xi, ui) ∀i = 0, . . . , N − 1

g(xi, ui) ≤ 0 ∀i = 0, . . . , N − 1

h(xN ) ≤ 0

⇒ min F (z)

s.t.G(z) ≤ 0

H(z) = 0

Two challenges:

Discretization The world is continuous - where do we get f from?

Gradients Optimization is based on gradients - how to compute?

3



Nonlinear Programming



Recall: Descent Methods

min f(z)

z(k+1) = z(k) + t(k)∆z(k) with f(z(k+1)) < f(z(k))

• ∆z is the step or search direction

• t is the step size or step length

• f(z(k+1)) < f(z(k)), i.e., ∆z is a descent direction

• There exists a t > 0 such that f(z(k+1)) < f(z(k)) if ∇f(z)T∆z < 0

4



Newton’s Method

∆znt = −∇2f(z)
−1∇f(z)

• Interpretation: z + ∆znt minimizes second order approximation

f̂(z + v) = f(z) +∇f(z)T v +
1

2
vT∇2f(z)v

Optimality condition: ∇f̂(z + v∗) = 0

∇f(z) +∇2f(z)v∗ = 0

⇒ ∇2f(z)v∗ = −∇f(z)

(z, f (z))

(z + �znt , f (z + �znt))

• Decent direction:

∇f(z)T∆znt = −∇f(z)T∇2f(z)−1∇f(z) < 0

f convex implies that ∇2f(z) � 0

• If z is close to optimum, ‖∇f(z)‖2 converges to zero quadratically (extremely

quickly)

5



Gauss-Newton Method for NLPs

min F (z) = ‖R(z)‖2

s.t. G(z) ≤ 0

H(z) = 0

Compute quadratic approximation

min ‖R(zk) +∇R(zk)T∆z‖2

s.t. G(zk) +∇G(zk)T∆z ≤ 0

H(zk) +∇H(zk)T∆z = 0

We solve this quadratic program to get the search direction ∆z, and then compute a

step size via line search1

1Note that this is a little more complex than in the convex case

6



Gauss-Newton Method for NLPs

min F (z) = ‖R(z)‖2

s.t. G(z) ≤ 0

H(z) = 0

Compute quadratic approximation

min ‖R(zk) +∇R(zk)T∆z‖2

s.t. G(zk) +∇G(zk)T∆z ≤ 0

H(zk) +∇H(zk)T∆z = 0

We solve this quadratic program to get the search direction ∆z, and then compute a

step size via line search1

1Note that this is a little more complex than in the convex case

6



Newton’s Method for NLPs - Sequential Quadratic Programming

This can also be done for general NLPs

min F (z)

s.t. G(z) ≤ 0

H(z) = 0

Compute quadratic approximation

min ∇F (zk)T∆z +
1

2
∆zTAk∆z

s.t. G(zk) +∇G(zk)T∆z ≤ 0

H(zk) +∇H(zk)T∆z = 0

where Ak is the Hessian of the Lagrangian function.

Dual optimal solution of the QP also gives a search direction for the dual variables.

7



Many Methods to solve NLPs...

Interior-point Form the KKT optimality conditions and apply Newton’s method to

the set of equations.

Sequential Quadratic Programming Linearize the KKT conditions and solve.

Equivalent to (sort of) computing quadratic approximation of the

original problem repeatedly.

Operator Splitting methods Divide the optimization problem into the sum of two

“simple” parts

min f(x) + g(z) s.t. x = z

Solve by alternating between minimizing f and minimizing g. Useful

when solving f and g alone is very easy.

All of these methods require gradient calculations!

8



Discretization



Discretization of Nonlinear Systems

The world is continuous

ẋ = f(x, u)

How do we discretize?

xk+1 = f̂(xk, uk)

For linear systems, this is easy and closed-form

For nonlinear is has to be done online

9



Example: Pendulum

Moment of inertia wrt. rotational axis: m l2

Torque caused by external force: Tc

Torque caused by gravity: mg l sin(θ)

System equation: m l2 θ̈ = Tc −mg l sin(θ)

mg

Tc

u

l

Using x1 := θ, x2 := θ̇ = ẋ1, u := Tc/m l2 and g/l = 10

ẋ =

(
ẋ1

ẋ2

)
=

(
x2

− g
l

sin(x1) + u

)
=

(
x2

−10 sin(x1) + u

)
= f(x, u)

10



Integration - The Simple Way

Try the most obvious thing - Euler approximation

x+ = x+ hf(x, u)

where h is the sample period.

xk+1 = xk + h

[
x2,k

−10 sin(x1,k) + uk

]

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.2

0

0.2 Solution : Matlab ODE45

Time (sec)

Orange: Velocity, Blue: Angle 11



Integration - The Simple Way

Try the most obvious thing - Euler approximation

x+ = x+ hf(x, u)

where h is the sample period.

xk+1 = xk + h

[
x2,k

−10 sin(x1,k) + uk

]

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.2

0

0.2 Solution : Euler, Sample period 0.01s

Time (sec)

Orange: Velocity, Blue: Angle 11



Integration - The Simple Way

Try the most obvious thing - Euler approximation

x+ = x+ hf(x, u)

where h is the sample period.

xk+1 = xk + h

[
x2,k

−10 sin(x1,k) + uk

]

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.2

0

0.2 Solution : Euler, Sample period 0.1s

Time (sec)

Orange: Velocity, Blue: Angle 11



Two Methods of Integration

1. Direct integration

• Use a integration algorithm to compute x(k + 1) = x(k) +
∫ Ts(k+1)
t=Tsk

f(x, u)dt

2. Collocation

• Define the trajectory in terms of basis functions

x(t) =

q∑
i=0

wiβi(t)

• Enforce that the dynamic equations are met at the collocation points

ẋ(tk) = f(xk, uk) =

q∑
i=0

wiβ̇i(tk)

12



Runge-Kutta - The Basic Idea

Consider the ODE

ẋ = f(x)

Given x = x(t), we want to compute x+ = x(t+ h)

Compute a second-order Taylor series expansion

x+ = x+ hẋ+
h2

2
ẍ+O(h3)

Take Jacobian of f to compute ẍ

ẍ = Jf (x)ẋ = Jf (x)f(x)

The Taylor series expansion is now

x+ = x+ hf(x) +
h2

2
Jf (x)f(x) +O(h3)

= x+
h

2
f(x) +

h

2
(f(x) + hJf (x)f(x)) +O(h3)

13



Runge-Kutta - The Basic Idea

Consider the ODE

ẋ = f(x)

Given x = x(t), we want to compute x+ = x(t+ h)

Compute a second-order Taylor series expansion

x+ = x+ hẋ+
h2

2
ẍ+O(h3)

Take Jacobian of f to compute ẍ

ẍ = Jf (x)ẋ = Jf (x)f(x)

The Taylor series expansion is now

x+ = x+ hf(x) +
h2

2
Jf (x)f(x) +O(h3)

= x+
h

2
f(x) +

h

2
(f(x) + hJf (x)f(x)) +O(h3)

13



Runge-Kutta - The Basic Idea

Consider the ODE

ẋ = f(x)

Given x = x(t), we want to compute x+ = x(t+ h)

Compute a second-order Taylor series expansion

x+ = x+ hẋ+
h2

2
ẍ+O(h3)

Take Jacobian of f to compute ẍ

ẍ = Jf (x)ẋ = Jf (x)f(x)

The Taylor series expansion is now

x+ = x+ hf(x) +
h2

2
Jf (x)f(x) +O(h3)

= x+
h

2
f(x) +

h

2
(f(x) + hJf (x)f(x)) +O(h3)

13



Runge-Kutta - The Basic Idea

Consider the ODE

ẋ = f(x)

Given x = x(t), we want to compute x+ = x(t+ h)

Compute a second-order Taylor series expansion

x+ = x+ hẋ+
h2

2
ẍ+O(h3)

Take Jacobian of f to compute ẍ

ẍ = Jf (x)ẋ = Jf (x)f(x)

The Taylor series expansion is now

x+ = x+ hf(x) +
h2

2
Jf (x)f(x) +O(h3)

= x+
h

2
f(x) +

h

2
(f(x) + hJf (x)f(x)) +O(h3)

13



Runge-Kutta - The Basic Idea

The Taylor series expansion is now

x+ = x+
h

2
f(x) +

h

2
(f(x) + hJf (x)f(x)) +O(h3)

Consider the Taylor series expansion of the expression

f(x+ hf(x)) = f(x) + hJf (x)f(x) +O(h2)

Therefore, we get

x+ ≈ x+
h

2
f(x) +

h

2
f(x+ hf(x))

= x+ h

(
1

2
k1 +

1

2
k2

)
where

k1 = f(x)

k2 = f(x+ hk1)

14



Runge-Kutta 4 - The Most Common Version

Consider the time dependent ODE

ẋ = f(t, x)

xk+1 = xk + h

(
k1
6

+
k2
3

+
k3
3

+
k4
6

)
where

k1 = f(tk, xk)

k2 = f(tk +
h

2
, xk +

h

2
k1)

k3 = f(tk +
h

2
, xk +

h

2
k2)

k4 = f(tk + h, xk + hk3)

Note: There are many more ways to integrate, and different methods are appropriate

depending on the properties of your system, and requirements of the optimization.

15



Example: Discretization of the pendulum

Pendulum equations are given by

ẋ =

[
x2

−10 sin(x1) + u

]

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.2

−0.1

0

0.1

0.2
Solution : Matlab ODE45

Time (sec)

Orange: Velocity, Blue: Angle 16



Example: Discretization of the pendulum

Pendulum equations are given by

ẋ =

[
x2

−10 sin(x1) + u

]

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.2

−0.1

0

0.1

0.2
Solution : Euler, Sample period 0.01s

Time (sec)

Orange: Velocity, Blue: Angle 16



Example: Discretization of the pendulum

Pendulum equations are given by

ẋ =

[
x2

−10 sin(x1) + u

]

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.2

−0.1

0

0.1

0.2
Solution : Euler, Sample period 0.1s

Time (sec)

Orange: Velocity, Blue: Angle 16



Example: Discretization of the pendulum

Pendulum equations are given by

ẋ =

[
x2

−10 sin(x1) + u

]

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.2

−0.1

0

0.1

0.2
Solution : RK4, Sample period 0.1s

Time (sec)

Orange: Velocity, Blue: Angle 16



Two Methods of Integration

1. Direct integration

• Use a integration algorithm to compute x(k + 1) = x(k) +
∫ Ts(k+1)
t=Tsk

f(x, u)dt

2. Collocation

• Define the trajectory in terms of basis functions

x(t) =

q∑
i=0

wiβi(t)

• Enforce that the dynamic equations are met at the collocation points

ẋ(tk) = f(xk, uk) =

q∑
i=0

wiβ̇i(tk)

17



Polynomial Interpolation

Given the state xk = x(tk) and the constant input u(t) = uk we want to compute the

state xk+1 = x(tk+1) for the system ẋ = f(x, u).

Time grid

{tk,0, . . . , tk,K} ∈ [tk, tk+1]

Lagrange Polynomials

Pk,i(t) =

K∏
j=0,j 6=i

t− tk,j
tk,i − tk,j

∈ R

We have the property

Pk,i(tk,l) =

1 if l = i

0 if l 6= i
tk tk+1

−0.5

0

0.5

1

1.5

t k
,1

t k
,2

t k
,3

t k
,4

t k
,5

Time (s)

18



Polynomial Interpolation

Given the state xk = x(tk) and the constant input u(t) = uk we want to compute the

state xk+1 = x(tk+1) for the system ẋ = f(x, u).

Time grid

{tk,0, . . . , tk,K} ∈ [tk, tk+1]

Lagrange Polynomials

Pk,i(t) =
K∏

j=0,j 6=i

t− tk,j
tk,i − tk,j

∈ R

We have the property

Pk,i(tk,l) =

1 if l = i

0 if l 6= i
tk tk+1

−0.5

0

0.5

1

1.5

t k
,1

t k
,2

t k
,3

t k
,4

t k
,5

Time (s)
18



Polynomial Interpolation

Given the state xk = x(tk) and the constant input u(t) = uk we want to compute the

state xk+1 = x(tk+1) for the system ẋ = f(x, u).

Time grid

{tk,0, . . . , tk,K} ∈ [tk, tk+1]

Lagrange Polynomials

Pk,i(t) =
K∏

j=0,j 6=i

t− tk,j
tk,i − tk,j

∈ R

We have the property

Pk,i(tk,l) =

1 if l = i

0 if l 6= i
tk tk+1

−0.5

0

0.5

1

1.5

t k
,1

t k
,2

t k
,3

t k
,4

t k
,5

Pk,0(t)

Time (s)
18



Polynomial Interpolation

Given the state xk = x(tk) and the constant input u(t) = uk we want to compute the

state xk+1 = x(tk+1) for the system ẋ = f(x, u).

Time grid

{tk,0, . . . , tk,K} ∈ [tk, tk+1]

Lagrange Polynomials

Pk,i(t) =
K∏

j=0,j 6=i

t− tk,j
tk,i − tk,j

∈ R

We have the property

Pk,i(tk,l) =

1 if l = i

0 if l 6= i
tk tk+1

−0.5

0

0.5

1

1.5

t k
,1

t k
,2

t k
,3

t k
,4

t k
,5

Pk,0(t) Pk,1(t)

Time (s)
18



Polynomial Interpolation

Given the state xk = x(tk) and the constant input u(t) = uk we want to compute the

state xk+1 = x(tk+1) for the system ẋ = f(x, u).

Time grid

{tk,0, . . . , tk,K} ∈ [tk, tk+1]

Lagrange Polynomials

Pk,i(t) =
K∏

j=0,j 6=i

t− tk,j
tk,i − tk,j

∈ R

We have the property

Pk,i(tk,l) =

1 if l = i

0 if l 6= i
tk tk+1

−0.5

0

0.5

1

1.5

t k
,1

t k
,2

t k
,3

t k
,4

t k
,5

Pk,0(t) Pk,1(t) Pk,2(t)

Time (s)
18



Polynomial Interpolation

Given the state xk = x(tk) and the constant input u(t) = uk we want to compute the

state xk+1 = x(tk+1) for the system ẋ = f(x, u).

Time grid

{tk,0, . . . , tk,K} ∈ [tk, tk+1]

Lagrange Polynomials

Pk,i(t) =
K∏

j=0,j 6=i

t− tk,j
tk,i − tk,j

∈ R

We have the property

Pk,i(tk,l) =

1 if l = i

0 if l 6= i
tk tk+1

−0.5

0

0.5

1

1.5

t k
,1

t k
,2

t k
,3

t k
,4

t k
,5

Pk,0(t) Pk,1(t) Pk,2(t) Pk,3(t)

Time (s)
18



Polynomial Interpolation

Given the state xk = x(tk) and the constant input u(t) = uk we want to compute the

state xk+1 = x(tk+1) for the system ẋ = f(x, u).

Time grid

{tk,0, . . . , tk,K} ∈ [tk, tk+1]

Lagrange Polynomials

Pk,i(t) =
K∏

j=0,j 6=i

t− tk,j
tk,i − tk,j

∈ R

We have the property

Pk,i(tk,l) =

1 if l = i

0 if l 6= i
tk tk+1

−0.5

0

0.5

1

1.5

t k
,1

t k
,2

t k
,3

t k
,4

t k
,5

Pk,0(t) Pk,1(t) Pk,2(t) Pk,3(t) Pk,4(t)

Time (s)
18



Polynomial Interpolation

Define the interpolating function

x(θk, t) =

K∑
i=0

θk,i︸︷︷︸
parameters

· Pk,i(t)︸ ︷︷ ︸
polynomials

Where we note that x(θk, tk,j) = θk,j

tk tk+1
0

0.5

1

1.5

t k
,1

t k
,2

t k
,3

t k
,4

t k
,5

θk

19



Polynomial Interpolation

Define the interpolating function

x(θk, t) =

K∑
i=0

θk,i︸︷︷︸
parameters

· Pk,i(t)︸ ︷︷ ︸
polynomials

Where we note that x(θk, tk,j) = θk,j

tk tk+1
0

0.5

1

1.5

t k
,1

t k
,2

t k
,3

t k
,4

t k
,5

19



Polynomial Interpolation

Define the interpolating function

x(θk, t) =

K∑
i=0

θk,i︸︷︷︸
parameters

· Pk,i(t)︸ ︷︷ ︸
polynomials

Where we note that x(θk, tk,j) = θk,j

tk tk+1
0

0.5

1

1.5

t k
,1

t k
,2

t k
,3

t k
,4

t k
,5

19



Polynomial Interpolation

Define the interpolating function

x(θk, t) =

K∑
i=0

θk,i︸︷︷︸
parameters

· Pk,i(t)︸ ︷︷ ︸
polynomials

Where we note that x(θk, tk,j) = θk,j

tk tk+1
0

0.5

1

1.5

t k
,1

t k
,2

t k
,3

t k
,4

t k
,5

19



Collocation

What we have:

• State xk at time tk

• Constant input u(t) = uk over the time interval [tk, tk+1]

• Gradient of the state trajectory ẋ = f(x, u)

Define a set of grid points {tk,0, . . . , tk,K} ∈ [tk, tk+1] and a polynomial interpolation

x(θk, t) :=

K∑
j=0

θk,jPk,j(t) x(θk, tk,j) = θk,j

Enforce the dynamics at the collocation points

= xk Initial condition

∂

∂t
x(θk, tk,j) = f(x(θk, tk,j), uk) Dynamics

20



Collocation

What we have:

• State xk at time tk

• Constant input u(t) = uk over the time interval [tk, tk+1]

• Gradient of the state trajectory ẋ = f(x, u)

Define a set of grid points {tk,0, . . . , tk,K} ∈ [tk, tk+1] and a polynomial interpolation

x(θk, t) :=

K∑
j=0

θk,jPk,j(t) x(θk, tk,j) = θk,j

Enforce the dynamics at the collocation points

= xk Initial condition

∂

∂t
x(θk, tk,j) = f(x(θk, tk,j), uk) Dynamics

20



Collocation

What we have:

• State xk at time tk

• Constant input u(t) = uk over the time interval [tk, tk+1]

• Gradient of the state trajectory ẋ = f(x, u)

Define a set of grid points {tk,0, . . . , tk,K} ∈ [tk, tk+1] and a polynomial interpolation

x(θk, t) :=

K∑
j=0

θk,jPk,j(t) x(θk, tk,j) = θk,j

Enforce the dynamics at the collocation points

x(θk, tk) = xk Initial condition

∂

∂t
x(θk, tk,j) = f(x(θk, tk,j), uk) Dynamics

20



Collocation

What we have:

• State xk at time tk

• Constant input u(t) = uk over the time interval [tk, tk+1]

• Gradient of the state trajectory ẋ = f(x, u)

Define a set of grid points {tk,0, . . . , tk,K} ∈ [tk, tk+1] and a polynomial interpolation

x(θk, t) :=

K∑
j=0

θk,jPk,j(t) x(θk, tk,j) = θk,j

Enforce the dynamics at the collocation points

θk,0 = xk Initial condition

∂

∂t
x(θk, tk,j) = f(x(θk, tk,j), uk) Dynamics

20



Collocation

What we have:

• State xk at time tk

• Constant input u(t) = uk over the time interval [tk, tk+1]

• Gradient of the state trajectory ẋ = f(x, u)

Define a set of grid points {tk,0, . . . , tk,K} ∈ [tk, tk+1] and a polynomial interpolation

x(θk, t) :=

K∑
j=0

θk,jPk,j(t) x(θk, tk,j) = θk,j

Enforce the dynamics at the collocation points

θk,0 = xk Initial condition

∂

∂t

K∑
j=0

θk,jPk,j(tk,j) = f(x(θk, tk,j), uk) Dynamics

20



Collocation

What we have:

• State xk at time tk

• Constant input u(t) = uk over the time interval [tk, tk+1]

• Gradient of the state trajectory ẋ = f(x, u)

Define a set of grid points {tk,0, . . . , tk,K} ∈ [tk, tk+1] and a polynomial interpolation

x(θk, t) :=

K∑
j=0

θk,jPk,j(t) x(θk, tk,j) = θk,j

Enforce the dynamics at the collocation points

θk,0 = xk Initial condition

K∑
j=0

θk,jṖk,j(tk,j) = f(x(θk, tk,j), uk) Dynamics

20



Collocation

What we have:

• State xk at time tk

• Constant input u(t) = uk over the time interval [tk, tk+1]

• Gradient of the state trajectory ẋ = f(x, u)

Define a set of grid points {tk,0, . . . , tk,K} ∈ [tk, tk+1] and a polynomial interpolation

x(θk, t) :=

K∑
j=0

θk,jPk,j(t) x(θk, tk,j) = θk,j

Enforce the dynamics at the collocation points

θk,0 = xk Initial condition

K∑
j=0

θk,jṖk,j(tk,j) = f(θk,j , uk) Dynamics

20



Collocation Constraints

Collocation conditions:

θk,0 = xk Initial condition

K∑
j=0

θk,jṖk,j(tk,j) = f(θk,j , uk) Dynamics

Re-write this as

θk,0 = xk

Dθk = f(θk, uk)

where the elements of the derivative matrix D are the constants Ṗk,j(tk,j) and

f(θk, uk) =
[
f(θk,0, uk) · · · f(θk,K , uk)

]T

21



Quadrature Rules

How to compute the value function?

V =

∫ T

0

l(x, u)dt

We note that this is equivalent to:

v̇ = l(x, u) V = v(T )

We can apply our discretization schemes to the ODE l(x, u). Consider the collocation

method

Dθv = l(θx, u)

where θv and θx are the values of v(t) and x(t) at the collocation points

θv = D−1l(θx, u)

Note that we only want v(T ) = θv(1) = wl(θx, u), where w is the first row of D−1.

22



Quadrature Rules

How to compute the value function?

V =

∫ T

0

l(x, u)dt

We note that this is equivalent to:

v̇ = l(x, u) V = v(T )

We can apply our discretization schemes to the ODE l(x, u).

Consider the collocation

method

Dθv = l(θx, u)

where θv and θx are the values of v(t) and x(t) at the collocation points

θv = D−1l(θx, u)

Note that we only want v(T ) = θv(1) = wl(θx, u), where w is the first row of D−1.

22



Quadrature Rules

How to compute the value function?

V =

∫ T

0

l(x, u)dt

We note that this is equivalent to:

v̇ = l(x, u) V = v(T )

We can apply our discretization schemes to the ODE l(x, u). Consider the collocation

method

Dθv = l(θx, u)

where θv and θx are the values of v(t) and x(t) at the collocation points

θv = D−1l(θx, u)

Note that we only want v(T ) = θv(1) = wl(θx, u), where w is the first row of D−1.

22



Collocation - Optimization Problem

Putting it all together:

min
{uk},{θxk}

N∑
i=0

wT l(θxi , ui)

s.t. Dθxi = f(θxi , ui)

θxi (end) = θxi+1(1)

xi = θxi (1)

xi ∈ X,ui ∈ U

The size of this problem is

(horizion)× ((num inputs) + (num states)× (num collocation points))

This is quite large, but also quite sparse and structured.

Note that I’ve been a bit loose with the notation here in the translation from 1D to nD

and the differentiation matrix here would be the Kronecker product D ⊗ In.

23



Gradients



What is the Gradient of an Integral?

We now have

xk+1 = f̂(xk, uk)← f̂ = RK4

To solve the optimization problem, we need ∇f̂

How to compute the derivative of an algorithm?!

24



Symbolic / Manual Differentiation Sucks

Consider the simple system

ẋ = f(x) = x2

Discretize with a sample period of h = 1s using RK4

x+ = f̂(x)

The derivative of f̂ is

x

3
+

2
((

x2

2
+ x
)

(x+ 1) + 1
) x+

(
x2

2
+x

)2

2

+ 1

 x+

x+

(
x2

2
+x

)2

2

2
3

+
2
(
x2

2
+ x
)

(x+ 1)

3
+

2
((

x2

2
+ x
)

(x+ 1) + 1
) x+

(
x2

2
+x

)2

2


3

+ 1

25



Algorithmic Differentiation - The Rough Idea

y = sin(a× b)× c

can be written via the computation graph of elementary operations

×

sint2

×t1

a b

c

Sequence of elementary operations

• Each intrinsic v = φ(w, u) has local

partials ∂φ
∂w
, ∂φ
∂u

• e.g., sin(t1) yields p1 = cos(t1)

t1 = a× b

t2 = sin(t1)

y = t2 × c

1Slides on AD based on “Introduction to Algorithmic Differentiation” by J. Utke, Argonne National

Laboratory Mathematics and Computer Science Division, 2013

26



Algorithmic Differentiation - The Rough Idea

y = sin(a× b)× c

can be written via the computation graph of elementary operations

×

sint2

×t1

a b

p1 = cos(t1)

c

Sequence of elementary operations

• Each intrinsic v = φ(w, u) has local

partials ∂φ
∂w
, ∂φ
∂u

• e.g., sin(t1) yields p1 = cos(t1)

t1 = a× b

p1 = cos(t1)

t2 = sin(t1)

y = t2 × c

1Slides on AD based on “Introduction to Algorithmic Differentiation” by J. Utke, Argonne National

Laboratory Mathematics and Computer Science Division, 2013

26



Algorithmic Differentiation - The Rough Idea

• associate each variable v with a derivative v̇

• take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

• for each v = φ(w, u) propagate forward in order v̇ = ∂φ
w
ẇ + ∂φ

w
u̇

×

sint2

×t1

a

da

b

db

p1 = cos(t1)

c

dc

• Associate a derivative with each

variable [a, da]

• Interleave computations

t1 = a× b

p1 = cos(t1)

t2 = sin(t1)

y = t2 × c

27



Algorithmic Differentiation - The Rough Idea

• associate each variable v with a derivative v̇

• take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

• for each v = φ(w, u) propagate forward in order v̇ = ∂φ
w
ẇ + ∂φ

w
u̇

×

sint2

×t1

a

da

b

db

p1 = cos(t1)

c

dc

• Associate a derivative with each

variable [a, da]

• Interleave computations

t1 = a× b

dt1 = da × b+ db × a

p1 = cos(t1)

t2 = sin(t1)

dt2 = dt1 × p1
y = t2 × c

dy = dt2 × c+ dc × t2

27



Algorithmic Differentiation - The Rough Idea

• What is returned: ẏ = Jẋ computed at x0

• Example: (ȧ, ḃ, ċ) = (1, 0, 0) will compute the first column of J

• Can compute J by evaluating the function length(x) times

• For optimization, we normally only need the product of J and a vector, which can

be done in one computation

28



Example - Jacobian via Algorithmic Differentiation - CASADI

To MATLAB / CASADI : sym_example.m

29



NMPC



Example - NMPC - CASADI

To MATLAB / CASADI : pendulum.m

30



Summary

Theory Very similar to linear MPC (although many important details that we

haven’t covered for more complex problems)

Computation A lot more complex

Practical Many, many challenges not mentioned here arising from local optima,

slow computations, numerical issues, etc

Many are working on tools to make NMPC as simple and practical as (linear) MPC.

31


	NMPC Theory - Quick and Dirty
	Nonlinear Programming
	Discretization
	Gradients
	NMPC

