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NMPC Theory - Quick and Dirty



Nonlinear Model Predictive Control - NMPC

N-1
u* (7o) = argmin Z Uz, wi) + Vi(zn)
i=0
s.t. ZTit1 = f(zi,u;) Vi=0,...,N—1
g(zi,ui) <0 Vi=0,...,N—1
h(zn) <0

where f, g and h are continuous.
Theory is the same as linear MPC

Feasibility Same assumptions on terminal constraint
Stability Same assumptions on stage cost and terminal cost
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where f, g and h are continuous.
Theory is the same as linear MPC

Feasibility Same assumptions on terminal constraint
Stability Same assumptions on stage cost and terminal cost

What is much harder

Invariance Sets are harder to calculate... so we often drop terminal constraints
(or take zy =0)

Optimality May only obtain a local minimum, or there may be multiple optimal
solutions. This leads to many difficulties.



Today: Forming and Solving NMPC Problems

N-1
min Z Wxi, wi) + Vi(zn)
i=0
s.t. Tit1 = f(T7, ’lu,) Vi = 07 . ,N -1
g(zi,ui) <0 Vi=0,...,N—1
h(CUN) S 0

Two challenges:

= min F(z)
st.G(2) <0
H(z)=0

Discretization The world is continuous - where do we get f from?

Gradients Optimization is based on gradients - how to compute?



Nonlinear Programming



Recall: Descent Methods

min f(z)

2D — R R AR itk f(z(k+1)) < f(z(k))

Az is the step or search direction

e ¢ is the step size or step length

FEEDY < £(20), ie., Az is a descent direction

e There exists a t > 0 such that f(z**Y) < f(z®) if Vf(2)TAz <0



Newton’s Method

Azne = —V2f(2) "'V f(2)

e Interpretation: z + Az,¢ minimizes second order approximation

fe o) = £(2) + VI 0+ 50" S ()

Optimality condition: Vf(z 4+ v*) =0

VF(z)+ Vif(z)v" =0 (z.f(2))
= sz(z)v* =-Vf(z)

(2 + Dzpe, F(z+ Dzpe))
e Decent direction:

Vi) Az = =Vf(2)'Vf(2)"'Vf(2) <0

f convex implies that VZf(2) = 0

e If z is close to optimum, ||V f(2)||2 converges to zero quadratically (extremely
quickly)



Gauss-Newton Method for NLPs

min F(z) = |R(z)|?
sit. G(z) <0
H(z)=0

!Note that this is a little more complex than in the convex case



Gauss-Newton Method for NLPs

min F(z) = |R(z)|?
sit. G(z) <0
H(z)=0

Compute quadratic approximation

min ||R(z") + VR(zF)" Az|)?
st. G(z") +VG(EM)TAz <0
H(Z*)+VHE") Az =0

We solve this quadratic program to get the search direction Az, and then compute a
step size via line search!

!Note that this is a little more complex than in the convex case



Newton’s Method for NLPs - Sequential Quadratic Programming

This can also be done for general NLPs

min F(z)
sit. G(2) <0
H(z)=0

Compute quadratic approximation
min VF(zF)TAz + %AZTMAZ

st. G(z")+VG(E") Az <0
H(Z)+VHE) Az=0

where A* is the Hessian of the Lagrangian function.

Dual optimal solution of the QP also gives a search direction for the dual variables.



Many Methods to solve NLPs...

Interior-point Form the KKT optimality conditions and apply Newton's method to
the set of equations.

Sequential Quadratic Programming Linearize the KKT conditions and solve.
Equivalent to (sort of) computing quadratic approximation of the
original problem repeatedly.

Operator Splitting methods Divide the optimization problem into the sum of two
“simple” parts

min f(x)+g(z) st. x =2

Solve by alternating between minimizing f and minimizing g. Useful
when solving f and ¢ alone is very easy.

All of these methods require gradient calculations!



Discretization



Discretization of Nonlinear Systems

The world is continuous

T = f({E,U)

How do we discretize?

Try1 = flan, u)

For linear systems, this is easy and closed-form

For nonlinear is has to be done online



Example: Pendulum

Moment of inertia wrt. rotational axis: m 2

Torque caused by external force: T.
Torque caused by gravity: m glsin(0)
System equation: mi?6=T.—mgl sin(0)

Using x1 := 0,22 := 0=, u:= Tc/ml2 and g/l =10

T = <$2> - <—s1n.(m1)+u> - <—105ir.1(x1) +u> = f(z,u)

10



Integration - The Simple Way

Try the most obvious thing - Euler approximation
zt =2+ hf(r,u)
where h is the sample period.

T2k

— h
Th4+1 = Tk + —10sin(z1,x) + uk

T T T T

0.9 | Solution : Matlab ODE45 ‘

| | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (sec)

Orange: Velocity, Blue: Angle 11
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Two Methods of Integration

1. Direct integration

e Use a integration algorithm to compute z(k + 1) = z(k) + L&}iz_l) fz,u)dt

2. Collocation

e Define the trajectory in terms of basis functions
q
z(t) =D wifi(t)
i=0
e Enforce that the dynamic equations are met at the collocation points

q
@(ty) = (e, up) = > wiBi(ty)

=0

12



Runge-Kutta - The Basic ldea

Consider the ODE
i = 1)

Given = = z(t), we want to compute z = z(t + h)

13



Runge-Kutta - The Basic ldea

Consider the ODE
i = f(@)
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Compute a second-order Taylor series expansion

2
et =z 4 hi+ %;’tJrO(hS)
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i = f(@)
Given = = z(t), we want to compute z = z(t + h)

Compute a second-order Taylor series expansion

2
et =z 4 hi+ %;’tJrO(hS)

Take Jacobian of f to compute &

i = Jy(x)d = Js(x)f(x)

13



Runge-Kutta - The Basic ldea

Consider the ODE
i = f(@)
Given = = z(t), we want to compute z = z(t + h)

Compute a second-order Taylor series expansion

2
et =z 4 hi+ %;’tJrO(hS)

Take Jacobian of f to compute &
&= Jy(x)d = Jy(x)f(x)
The Taylor series expansion is now
et =+ hf(x) + 5 Jr(2) f(2) + O(h®)

=+ o f(z) + 5 (f(@) + hp(2)f(z)) + O(h?)

13



Runge-Kutta - The Basic ldea

The Taylor series expansion is now

vt =a ot DR+ (@) + R () (@) + O(h)

Consider the Taylor series expansion of the expression
fl@+hf(x) = fx) +hJs(@)f () + O(h?)
Therefore, we get

wt L)+ 5 e+ (@)

1 1
= hi{ =k —k
T+ (2 1+2 2)

where

14



Runge-Kutta 4 - The Most Common Version

Consider the time dependent ODE

i‘:f(t,"E)
_ kl k?z k?3 'If4
$k+1—$k+h<6 + 3 + 3 + 6)
where

k1= f(tk, =x)

h h
k’2:f(tk+§,l'k:+§k'1)

h h
k3:f(tk+§yl'k+§k2)

ks = f(tx + h,zi + hks)

Note: There are many more ways to integrate, and different methods are appropriate
depending on the properties of your system, and requirements of the optimization.

15



Example: Discretization of the pendulum

Pendulum equations are given by
X2

€T =
—10sin(z1) + u

Solution : Matlab ODE45 | ‘ ‘ ‘ ‘
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Example: Discretization of the pendulum

Pendulum equations are given by
X2
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Two Methods of Integration

1. Direct integration

e Use a integration algorithm to compute z(k + 1) = z(k) + L&}iz_l) fz,u)dt

2. Collocation

e Define the trajectory in terms of basis functions
q
z(t) =D wifi(t)
i=0
e Enforce that the dynamic equations are met at the collocation points

q
@(ty) = (e, up) = > wiBi(ty)

=0
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Polynomial Interpolation

Given the state z;, = 2({x) and the constant input u(t) = ux we want to compute the
state Tx41 = x(tg41) for the system & = f(x,u).

18



Polynomial Interpolation

Given the state z;, = 2({x) and the constant input u(t) = ux we want to compute the
state Tx41 = x(tg41) for the system & = f(x,u).

1.5
Time grid
{tk,0y- - sti, ik} € [tr, tet] 1+ 3 -
Lagrange Polynomials
K C 0.5 1+ : : : =
Py i(t) = H —— I eR
otk — g
Jj=0,j7#1
0 f— -
We have the property
1 ifl=1 —0.5 »
Pri(try) = Ny | 1
ifl#1 h th
~ o » w v
R S & =
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Polynomial Interpolation

Given the state z;, = 2({x) and the constant input u(t) = ux we want to compute the
state Tx41 = x(tg41) for the system & = f(x,u).
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Time (s)
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Polynomial Interpolation

Given the state z;, = 2({x) and the constant input u(t) = ux we want to compute the

state Tx41 = x(tg41) for the system & = f(x,u).

Time grid
{tk,0y- - sti, ik} € [tr, tet]

Lagrange Polynomials

K ¢ ¢
) _ — lk,j
Pk’l(t) - H tk i — tk .
J=04#i " !

We have the property

1 ifl=1

Pyi(trr) = . .
0 ifl#£1d

eRr

1.5

Py o(t)

P 1 (t) Pk,z(t)
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Polynomial Interpolation

Given the state z;, = 2({x) and the constant input u(t) = ux we want to compute the
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Time grid
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Polynomial Interpolation

Define the interpolating function

K
2Ok, 1) =D Oki - Pra(t)
P ~—~ \‘.—/‘
parameters polynomials

Where we note that x(0k,tx ;) = Ok, ;

1.5

19



Polynomial Interpolation

Define the interpolating function

K
x(@k,t) = Z @ . Pk,i(t)

i=0 .
parameters polynomials

Where we note that x(0k,tx ;) = Ok, ;

1.5
1 .
0.5 |- .
0 I |
ttc ‘ ‘ e+
~ o 2] A 0
NS & & &

19



Polynomial Interpolation

Define the interpolating function

K
x(@k,t) = Z @ . Pk,i(t)

i=0 .
parameters polynomials

Where we note that x(0k,tx ;) = Ok, ;

1.5
1 .
0.5 |- .
0 I |
ttc ‘ ‘ e+
~ o 2] A 0
NS & & &

19



Polynomial Interpolation

Define the interpolating function

K
x(@k,t) = Z @ . Pk,i(t)

i=0 .
parameters polynomials

Where we note that x(0k,tx ;) = Ok, ;

1.5
1 .
0.5 |- .
0 I |
ttc ‘ ‘ e+
~ o 2] A 0
NS & & &

19



Collocation

What we have:

e State x at time ¢
e Constant input u(t) = uy over the time interval [tg, tr41]

e Gradient of the state trajectory & = f(z,u)

20
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What we have:
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e Constant input u(t) = uy over the time interval [tg, tr41]

e Gradient of the state trajectory & = f(z,u)
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Collocation Constraints

Collocation conditions:

Or,0 = xi, Initial condition
K
> 0k Pt ) = f(Oks,u) Dynamics
j=0
Re-write this as
Or,0 = Tk

Doy = f(Ok, uk)

where the elements of the derivative matrix D are the constants P ;(ty ;) and
T
f(Or,ur) = [f'(ek:,o, ug) - f(Orr,ur)

21



Quadrature Rules

How to compute the value function?

V= /T Uz, u)dt

0

22



Quadrature Rules

How to compute the value function?

V= /T Uz, u)dt

0

We note that this is equivalent to:
0 =1(z,u) V =v(T)

We can apply our discretization schemes to the ODE [(x, u).

22



Quadrature Rules

How to compute the value function?

V= /T Uz, u)dt

0

We note that this is equivalent to:
0 =1(z,u) V =v(T)

We can apply our discretization schemes to the ODE [(x,u). Consider the collocation
method

DO” = 1(6%,u)
where 6% and 6 are the values of v(t) and x(t) at the collocation points
0" = D107, w)

Note that we only want v(T) = #¥(1) = wl(#*, u), where w is the first row of D~

22



Collocation - Optimization Problem

Putting it all together:
al T
fun 1107} ;w 67 )
s.t. D67 = f(67,u;)
07 (end) = 67,1(1)
z; = 05 (1)
r, € X,u; €U

The size of this problem is

(horizion) x ((num inputs) 4+ (num states) x (num collocation points))

This is quite large, but also quite sparse and structured.

Note that I've been a bit loose with the notation here in the translation from 1D to nD
and the differentiation matrix here would be the Kronecker product D ® I,,.

23



Gradients




What is the Gradient of an Integral?

We now have
Th+1 = f(xk,uk) < f = RK4

To solve the optimization problem, we need Vf

How to compute the derivative of an algorithm?!

24



Symbolic / Manual Differentiation Sucks

Consider the simple system
i = f(z) = 2*
Discretize with a sample period of h = 1s using RK4

e = f(2)

The derivative of f is

)) ((HN 2 (21) oy 2((Fre)Erne) (M)

* 3 + 3

<2 (2+5) @+ 1) (H (2+)

T,
3

25



Algorithmic Differentiation - The Rough Idea

y =sin(a X b) X ¢
can be written via the computation graph of elementary operations

Q Sequence of elementary operations
e Each intrinsic v = ¢(w, u) has local
26 96

part|a|s Jw’ du

to @ @ e e.g., sin(t1) yields p1 = cos(t1)

t1 =a X b
30
tg = Sin(t1)

y=1ta XcC

!Slides on AD based on “Introduction to Algorithmic Differentiation” by J. Utke, Argonne National
Laboratory Mathematics and Computer Science Division, 2013
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Algorithmic Differentiation - The Rough Idea

y =sin(a X b) X ¢
can be written via the computation graph of elementary operations

Sequence of elementary operations
e Each intrinsic v = ¢(w, u) has local
26 96

part|a|s Jw’ du

e e.g., sin(ty) yields p1 = cos(t1)
t1 =a X b
p1 = cos(t1)
tz = sin(t1)

y=1ta Xc

!Slides on AD based on “Introduction to Algorithmic Differentiation” by J. Utke, Argonne National
Laboratory Mathematics and Computer Science Division, 2013
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Algorithmic Differentiation - The Rough Idea

e associate each variable v with a derivative ©
e take a point (ao, bo, co) and a direction (a,b,¢)

e for each v = ¢(w, u) propagate forward in order v = %w + %"571

e Associate a derivative with each
variable [a, d,]

e Interleave computations

d. ti=axb
t1 p1 = cos(t1)
to = sin(t1)

@ @ y=1ta Xc

27



Algorithmic Differentiation - The Rough Idea

e associate each variable v with a derivative ©
e take a point (ao, bo, co) and a direction (d,i), ¢)
e for each v = ¢(w, u) propagate forward in order v = %w + 924

e Associate a derivative with each
variable [a, d,]

e Interleave computations

de ti=axb
diy, =da X b+dp X a
p1 = cos(t1)
to = sin(t1)
diy = diy X D1

@ @ y=12Xc

dy =di, X c+de X t2

27



Algorithmic Differentiation - The Rough Idea

What is returned: y = J& computed at xg

Example: (d,i), ¢) = (1,0,0) will compute the first column of J
e Can compute J by evaluating the function length(z) times

e For optimization, we normally only need the product of J and a vector, which can
be done in one computation

28



Example - Jacobian via Algorithmic Differentiation - CASADI

To MATLAB / CASADI : sym_example.m

29



NMPC




Example - NMPC - CASADI

To MATLAB / CASADI : pendulum.m

30



Theory Very similar to linear MPC (although many important details that we
haven't covered for more complex problems)

Computation A lot more complex

Practical Many, many challenges not mentioned here arising from local optima,
slow computations, numerical issues, etc

Many are working on tools to make NMPC as simple and practical as (linear) MPC.
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